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Lines in R2

A line in R2 is determined by a point P0 = (x0, y0) on the line, together with either a normal vector
~n = 〈a, b〉, or a direction vector ~v = 〈v1, v2〉. Let P = (x, y) denote an arbitrary point on the line.

Normal Vector

The vector from P0 to P is perpendicular to the
normal vector. This gives the first equation.

The normal equation of the line is

(P − P0) · ~n = 0.

Now P − P0 = 〈x − x0, y − y0〉, so 〈x − x0, y −
y0〉 · 〈a, b〉 = 0, whence a(x− x0) + b(y− y0) = 0.
This gives the next equation.

The general equation of the line is

ax + by = c,

where c = ax0 + by0. If b 6= 0, we divide through
by it to get the final form of the equation.

The slope-intercept form of the equation of the
line is

y = mx + k,

where m = −a

b
and k =

c

b
.

Direction Vector

The vector ~v is in the direction of the line, so if we set

t =
|P − P0|
|~v|

, then t~v = P−P0. Turn this around, and

view P as a function of t. This gives the first equation.

The vector equation of the line is

P = P0 + t~v,

where P depends on t. Traditionally, if we view P as
the path of a particle in motion, we set ~r(t) = P , so
that

~r(t) = P0 + t~v.

We call ~r(t) the position vector of the particle, and
we call ~v the velocity vector. Since ~r depends on t,
so do the x and y coordinates of ~r, so they are also
functions of t, and we may write ~r(t) = 〈x(t), y(t)〉.
Thus 〈x(t), y(t)〉 = (x0, y0) + t〈v1, v2〉. This leads to
the next equations.

The parametric equations of the line are

x = x0 + tv1 and y = y0 + tv2.

Solving each of these equations for t and then equating
the results give the next equation.

The symmetric equation of the line is

x− x0

v1
=

y − y0
v2

.



Lines and Planes in R3

In three dimensions, only planes have normal vectors, and lines have direction vectors.

Normal Vector of a Plane

A plane in R3 is determined by a fixed point P0 =
(x0, y0, z0) on the plane, together with a normal
vector ~n = 〈a, b, c〉 for the plane.
Let P = (x, y, z) denote an arbitrary point on
the plane. The vector from P0 to P is perpen-
dicular to the normal vector. This gives the first
equation.

The normal equation of the plane is

(P − P0) · ~n = 0.

Now P − P0 = 〈x− x0, y − y0, z − z0〉, so

〈x− x0, y − y0, z − z0〉 · 〈a, b, c〉 = 0,

whence a(x−x0)+b(y−y0)+c(z−z0) = 0. This
gives the next equation.

The general equation of the plane is

ax + by + cz = d,

where d = ax0 + by0 + cz0.

Direction Vector of a Line

A line in R3 is determined by a point P0 = (x0, y0, z0)
on the line, together with a direction vector ~v =
〈v1, v2, v3〉 for the line.
Let P = (x, y, z) denote an arbitrary point on the line.
The vector ~v is in the direction of the line, so if we set

t =
|P − P0|
|v|

, then t~v = P−P0. Turn this around, and

view P as a function of t. This gives the first equation.

The vector equation of the line is

P (t) = P0 + t~v,

or using the common “position vector” notation,

~r(t) = P0 + t~v.

Since ~r depends on t, so do the x, y and z coordi-
nates of ~r, so they are also functions of t, and we may
write ~r(t) = 〈x(t), y(t), z(t)〉. Thus 〈x(t), y(t), z(t)〉 =
(x0, y0, z0) + t〈v1, v2, v3〉. This leads to the next equa-
tions.

The parametric equations of the line are

x = x0 + tv1, y = y0 + tv2, and z = z0 + tv3.

Solving each of these equations for t and then equating
the results give the next equations.

The symmetric equations of the line are

x− x0

v1
=

y − y0
v2

=
z − z0
v3

.


